Solitary wave transformation on the underwater step: Asymptotic theory and numerical experiments

نویسندگان

  • Efim Pelinovsky
  • Byung Ho Choi
  • Tatiana Talipova
  • Seung Buhm Woo
  • Dong Chule Kim
چکیده

The transformation of a solitary wave on an underwater step is studied analytically and numerically. The theoretical model includes the linear potential description of the wave transformation on a step and the weakly nonlinear theory of long waves based on the Korteweg–de Vries equation for reflected and transmitted waves far from a step. Numerical simulation of solitary wave transformation on an underwater step is performed in the framework of an extended 1D Boussinesq-like system and fully nonlinear fully dispersive 2D Navier–Stokes equations. The results of numerical simulations for the incident solitary wave of weak amplitude are in agreement with the theoretical predictions for the wave shapes of the secondary solitons, but not with the predictions for travel times. 2009 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method

Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...

متن کامل

GPU-SPH simulation of Tsunami-like wave interaction with a seawall associated with underwater

Investigation of the waves generated by underwater disturbances gives precious insight into the effect of man-made underwater explosions as well as natural phenomena, such as underwater volcanoes or oceanic meteor impact. On the other hand, prediction of the effects of such waves on the coastal installations and structures is required for preparation worthwhile criteria for coastal engineers to...

متن کامل

ISPH Numerical Modeling of Nonlinear Wave Run-up on Steep Slopes

Non-breaking tsunami waves run-up on steep slopes can cause severe damages to coastal structures. The estimation of the wave run-up rate caused by tsunami waves are important to understand the performance and safety issues of the breakwater in practice. In this paper, an Incompressible Smoothed Particle Hydrodynamics method (ISPH) method was utilized for the 2DV numerical modeling of nonli...

متن کامل

Asymptotic solitons for a higher-order modified Korteweg-de Vries equation.

Solitary wave interaction for a higher-order modified Korteweg-de Vries (mKdV) equation is examined. The higher-order mKdV equation can be asymptotically transformed to the mKdV equation, if the higher-order coefficients satisfy a certain algebraic relationship. The transformation is used to derive the higher-order two-soliton solution and it is shown that the interaction is asymptotically elas...

متن کامل

Combined Effect of Rotation and Topography on Shoaling Oceanic Internal Solitary Waves

Internal solitary waves commonly observed in the coastal ocean are oftenmodeled by a nonlinear evolution equation of the Korteweg–de Vries type. Because these waves often propagate for long distances over several inertial periods, the effect of Earth’s background rotation is potentially significant. The relevant extension of the Kortweg–de Vries is then the Ostrovsky equation, which for interna...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 217  شماره 

صفحات  -

تاریخ انتشار 2010